Browse Source

Fuck you python

AXCWG 5 tháng trước cách đây
mục cha
commit
2d881fdad5
2 tập tin đã thay đổi với 0 bổ sung225 xóa
  1. 0 11
      requirements.txt
  2. 0 214
      separate.py

+ 0 - 11
requirements.txt

@@ -1,11 +0,0 @@
-torch==2.0.1
-audioread==3.0.0
-librosa==0.10.0.post2
-onnx==1.14.0
-onnxruntime==1.15.0
-pydub==0.25.1
-soundstretch==1.2
-tqdm==4.65.0
-Pillow==9.5.0
-resampy==0.4.2
-numpy<2

+ 0 - 214
separate.py

@@ -1,214 +0,0 @@
-import soundfile as sf
-import torch 
-import os 
-import librosa
-import numpy as np
-import onnxruntime as ort
-from pathlib import Path
-from argparse import ArgumentParser
-from tqdm import tqdm
-
-
-class ConvTDFNet:
-    def __init__(self, target_name, L, dim_f, dim_t, n_fft, hop=1024):
-        super(ConvTDFNet, self).__init__()
-        self.dim_c = 4
-        self.dim_f = dim_f
-        self.dim_t = 2**dim_t
-        self.n_fft = n_fft
-        self.hop = hop
-        self.n_bins = self.n_fft // 2 + 1
-        self.chunk_size = hop * (self.dim_t - 1)
-        self.window = torch.hann_window(window_length=self.n_fft, periodic=True)
-        self.target_name = target_name
-        
-        out_c = self.dim_c * 4 if target_name == "*" else self.dim_c
-        
-        self.freq_pad = torch.zeros([1, out_c, self.n_bins - self.dim_f, self.dim_t])
-        self.n = L // 2
-
-    def stft(self, x):
-        x = x.reshape([-1, self.chunk_size])
-        x = torch.stft(
-            x,
-            n_fft=self.n_fft,
-            hop_length=self.hop,
-            window=self.window,
-            center=True,
-            return_complex=True,
-        )
-        x = torch.view_as_real(x)
-        x = x.permute([0, 3, 1, 2])
-        x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape(
-            [-1, self.dim_c, self.n_bins, self.dim_t]
-        )
-        return x[:, :, : self.dim_f]
-
-    # Inversed Short-time Fourier transform (STFT).
-    def istft(self, x, freq_pad=None):
-        freq_pad = (
-            self.freq_pad.repeat([x.shape[0], 1, 1, 1])
-            if freq_pad is None
-            else freq_pad
-        )
-        x = torch.cat([x, freq_pad], -2)
-        c = 4 * 2 if self.target_name == "*" else 2
-        x = x.reshape([-1, c, 2, self.n_bins, self.dim_t]).reshape(
-            [-1, 2, self.n_bins, self.dim_t]
-        )
-        x = x.permute([0, 2, 3, 1])
-        x = x.contiguous()
-        x = torch.view_as_complex(x)
-        x = torch.istft(
-            x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True
-        )
-        return x.reshape([-1, c, self.chunk_size])
-
-class Predictor:
-    def __init__(self, args):
-        self.args = args
-        self.model_ = ConvTDFNet(
-            target_name="vocals",
-            L=11,
-            dim_f=args["dim_f"], 
-            dim_t=args["dim_t"], 
-            n_fft=args["n_fft"]
-        )
-        
-        if torch.cuda.is_available():
-            self.model = ort.InferenceSession(args['model_path'], providers=['CUDAExecutionProvider'])
-        else:
-            self.model = ort.InferenceSession(args['model_path'], providers=['CPUExecutionProvider'])
-
-    def demix(self, mix):
-        samples = mix.shape[-1]
-        margin = self.args["margin"]
-        chunk_size = self.args["chunks"] * 44100
-        
-        assert not margin == 0, "margin cannot be zero!"
-        
-        if margin > chunk_size:
-            margin = chunk_size
-
-        segmented_mix = {}
-
-        if self.args["chunks"] == 0 or samples < chunk_size:
-            chunk_size = samples
-
-        counter = -1
-        for skip in range(0, samples, chunk_size):
-            counter += 1
-            s_margin = 0 if counter == 0 else margin
-            end = min(skip + chunk_size + margin, samples)
-            start = skip - s_margin
-            segmented_mix[skip] = mix[:, start:end].copy()
-            if end == samples:
-                break
-
-        sources = self.demix_base(segmented_mix, margin_size=margin)
-        return sources
-
-    def demix_base(self, mixes, margin_size):
-        chunked_sources = []
-        progress_bar = tqdm(total=len(mixes))
-        progress_bar.set_description("Processing")
-        
-        for mix in mixes:
-            cmix = mixes[mix]
-            sources = []
-            n_sample = cmix.shape[1]
-            model = self.model_
-            trim = model.n_fft // 2
-            gen_size = model.chunk_size - 2 * trim
-            pad = gen_size - n_sample % gen_size
-            mix_p = np.concatenate(
-                (np.zeros((2, trim)), cmix, np.zeros((2, pad)), np.zeros((2, trim))), 1
-            )
-            mix_waves = []
-            i = 0
-            while i < n_sample + pad:
-                waves = np.array(mix_p[:, i : i + model.chunk_size])
-                mix_waves.append(waves)
-                i += gen_size
-            
-            mix_waves = torch.tensor(np.array(mix_waves), dtype=torch.float32)
-            
-            with torch.no_grad():
-                _ort = self.model
-                spek = model.stft(mix_waves)
-                if self.args["denoise"]:
-                    spec_pred = (
-                        -_ort.run(None, {"input": -spek.cpu().numpy()})[0] * 0.5
-                        + _ort.run(None, {"input": spek.cpu().numpy()})[0] * 0.5
-                    )
-                    tar_waves = model.istft(torch.tensor(spec_pred))
-                else:
-                    tar_waves = model.istft(
-                        torch.tensor(_ort.run(None, {"input": spek.cpu().numpy() })[0])
-                    )
-                tar_signal = (
-                    tar_waves[:, :, trim:-trim]
-                    .transpose(0, 1)
-                    .reshape(2, -1)
-                    .numpy()[:, :-pad]
-                )
-
-                start = 0 if mix == 0 else margin_size
-                end = None if mix == list(mixes.keys())[::-1][0] else -margin_size
-                
-                if margin_size == 0:
-                    end = None
-                
-                sources.append(tar_signal[:, start:end])
-
-                progress_bar.update(1)
-
-            chunked_sources.append(sources)
-        _sources = np.concatenate(chunked_sources, axis=-1)
-        
-        progress_bar.close()
-        return _sources
-
-    def predict(self, file_path):
-      
-        mix, rate = librosa.load(file_path, mono=False, sr=44100)
-        
-        if mix.ndim == 1:
-            mix = np.asfortranarray([mix, mix])
-        
-        mix = mix.T
-        sources = self.demix(mix.T)
-        opt = sources[0].T
-        
-        return (mix - opt, opt, rate)
-
-def main():
-    parser = ArgumentParser()
-    
-    parser.add_argument("files", nargs="+", type=Path, default=[], help="Source audio path")
-    parser.add_argument("-o", "--output", type=Path, default=Path("separated"), help="Output folder")
-    parser.add_argument("-m", "--model_path", type=Path, help="MDX Net ONNX Model path")
-
-    parser.add_argument("-d", "--no-denoise", dest="denoise", action="store_false", default=True, help="Disable denoising")
-    parser.add_argument("-M", "--margin", type=int, default=44100, help="Margin")
-    parser.add_argument("-c", "--chunks", type=int, default=15, help="Chunk size")
-    parser.add_argument("-F", "--n_fft", type=int, default=6144)
-    parser.add_argument("-t", "--dim_t", type=int, default=8)
-    parser.add_argument("-f", "--dim_f", type=int, default=2048)
-    
-    args = parser.parse_args()
-    dict_args = vars(args)
-    
-    os.makedirs(args.output, exist_ok=True)
-    
-    for file_path in args.files:  
-      predictor = Predictor(args=dict_args)
-      vocals, no_vocals, sampling_rate = predictor.predict(file_path)
-      filename = os.path.splitext(os.path.split(file_path)[-1])[0]
-      sf.write(os.path.join(args.output, filename+"_no_vocals.wav"), no_vocals, sampling_rate)
-      sf.write(os.path.join(args.output, filename+"_vocals.wav"), vocals, sampling_rate)
-  
-if __name__ == "__main__":
-    main()
-  
-