|
@@ -0,0 +1,214 @@
|
|
|
+import soundfile as sf
|
|
|
+import torch
|
|
|
+import os
|
|
|
+import librosa
|
|
|
+import numpy as np
|
|
|
+import onnxruntime as ort
|
|
|
+from pathlib import Path
|
|
|
+from argparse import ArgumentParser
|
|
|
+from tqdm import tqdm
|
|
|
+
|
|
|
+
|
|
|
+class ConvTDFNet:
|
|
|
+ def __init__(self, target_name, L, dim_f, dim_t, n_fft, hop=1024):
|
|
|
+ super(ConvTDFNet, self).__init__()
|
|
|
+ self.dim_c = 4
|
|
|
+ self.dim_f = dim_f
|
|
|
+ self.dim_t = 2**dim_t
|
|
|
+ self.n_fft = n_fft
|
|
|
+ self.hop = hop
|
|
|
+ self.n_bins = self.n_fft // 2 + 1
|
|
|
+ self.chunk_size = hop * (self.dim_t - 1)
|
|
|
+ self.window = torch.hann_window(window_length=self.n_fft, periodic=True)
|
|
|
+ self.target_name = target_name
|
|
|
+
|
|
|
+ out_c = self.dim_c * 4 if target_name == "*" else self.dim_c
|
|
|
+
|
|
|
+ self.freq_pad = torch.zeros([1, out_c, self.n_bins - self.dim_f, self.dim_t])
|
|
|
+ self.n = L // 2
|
|
|
+
|
|
|
+ def stft(self, x):
|
|
|
+ x = x.reshape([-1, self.chunk_size])
|
|
|
+ x = torch.stft(
|
|
|
+ x,
|
|
|
+ n_fft=self.n_fft,
|
|
|
+ hop_length=self.hop,
|
|
|
+ window=self.window,
|
|
|
+ center=True,
|
|
|
+ return_complex=True,
|
|
|
+ )
|
|
|
+ x = torch.view_as_real(x)
|
|
|
+ x = x.permute([0, 3, 1, 2])
|
|
|
+ x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape(
|
|
|
+ [-1, self.dim_c, self.n_bins, self.dim_t]
|
|
|
+ )
|
|
|
+ return x[:, :, : self.dim_f]
|
|
|
+
|
|
|
+ # Inversed Short-time Fourier transform (STFT).
|
|
|
+ def istft(self, x, freq_pad=None):
|
|
|
+ freq_pad = (
|
|
|
+ self.freq_pad.repeat([x.shape[0], 1, 1, 1])
|
|
|
+ if freq_pad is None
|
|
|
+ else freq_pad
|
|
|
+ )
|
|
|
+ x = torch.cat([x, freq_pad], -2)
|
|
|
+ c = 4 * 2 if self.target_name == "*" else 2
|
|
|
+ x = x.reshape([-1, c, 2, self.n_bins, self.dim_t]).reshape(
|
|
|
+ [-1, 2, self.n_bins, self.dim_t]
|
|
|
+ )
|
|
|
+ x = x.permute([0, 2, 3, 1])
|
|
|
+ x = x.contiguous()
|
|
|
+ x = torch.view_as_complex(x)
|
|
|
+ x = torch.istft(
|
|
|
+ x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True
|
|
|
+ )
|
|
|
+ return x.reshape([-1, c, self.chunk_size])
|
|
|
+
|
|
|
+class Predictor:
|
|
|
+ def __init__(self, args):
|
|
|
+ self.args = args
|
|
|
+ self.model_ = ConvTDFNet(
|
|
|
+ target_name="vocals",
|
|
|
+ L=11,
|
|
|
+ dim_f=args["dim_f"],
|
|
|
+ dim_t=args["dim_t"],
|
|
|
+ n_fft=args["n_fft"]
|
|
|
+ )
|
|
|
+
|
|
|
+ if torch.cuda.is_available():
|
|
|
+ self.model = ort.InferenceSession(args['model_path'], providers=['CUDAExecutionProvider'])
|
|
|
+ else:
|
|
|
+ self.model = ort.InferenceSession(args['model_path'], providers=['CPUExecutionProvider'])
|
|
|
+
|
|
|
+ def demix(self, mix):
|
|
|
+ samples = mix.shape[-1]
|
|
|
+ margin = self.args["margin"]
|
|
|
+ chunk_size = self.args["chunks"] * 44100
|
|
|
+
|
|
|
+ assert not margin == 0, "margin cannot be zero!"
|
|
|
+
|
|
|
+ if margin > chunk_size:
|
|
|
+ margin = chunk_size
|
|
|
+
|
|
|
+ segmented_mix = {}
|
|
|
+
|
|
|
+ if self.args["chunks"] == 0 or samples < chunk_size:
|
|
|
+ chunk_size = samples
|
|
|
+
|
|
|
+ counter = -1
|
|
|
+ for skip in range(0, samples, chunk_size):
|
|
|
+ counter += 1
|
|
|
+ s_margin = 0 if counter == 0 else margin
|
|
|
+ end = min(skip + chunk_size + margin, samples)
|
|
|
+ start = skip - s_margin
|
|
|
+ segmented_mix[skip] = mix[:, start:end].copy()
|
|
|
+ if end == samples:
|
|
|
+ break
|
|
|
+
|
|
|
+ sources = self.demix_base(segmented_mix, margin_size=margin)
|
|
|
+ return sources
|
|
|
+
|
|
|
+ def demix_base(self, mixes, margin_size):
|
|
|
+ chunked_sources = []
|
|
|
+ progress_bar = tqdm(total=len(mixes))
|
|
|
+ progress_bar.set_description("Processing")
|
|
|
+
|
|
|
+ for mix in mixes:
|
|
|
+ cmix = mixes[mix]
|
|
|
+ sources = []
|
|
|
+ n_sample = cmix.shape[1]
|
|
|
+ model = self.model_
|
|
|
+ trim = model.n_fft // 2
|
|
|
+ gen_size = model.chunk_size - 2 * trim
|
|
|
+ pad = gen_size - n_sample % gen_size
|
|
|
+ mix_p = np.concatenate(
|
|
|
+ (np.zeros((2, trim)), cmix, np.zeros((2, pad)), np.zeros((2, trim))), 1
|
|
|
+ )
|
|
|
+ mix_waves = []
|
|
|
+ i = 0
|
|
|
+ while i < n_sample + pad:
|
|
|
+ waves = np.array(mix_p[:, i : i + model.chunk_size])
|
|
|
+ mix_waves.append(waves)
|
|
|
+ i += gen_size
|
|
|
+
|
|
|
+ mix_waves = torch.tensor(np.array(mix_waves), dtype=torch.float32)
|
|
|
+
|
|
|
+ with torch.no_grad():
|
|
|
+ _ort = self.model
|
|
|
+ spek = model.stft(mix_waves)
|
|
|
+ if self.args["denoise"]:
|
|
|
+ spec_pred = (
|
|
|
+ -_ort.run(None, {"input": -spek.cpu().numpy()})[0] * 0.5
|
|
|
+ + _ort.run(None, {"input": spek.cpu().numpy()})[0] * 0.5
|
|
|
+ )
|
|
|
+ tar_waves = model.istft(torch.tensor(spec_pred))
|
|
|
+ else:
|
|
|
+ tar_waves = model.istft(
|
|
|
+ torch.tensor(_ort.run(None, {"input": spek.cpu().numpy() })[0])
|
|
|
+ )
|
|
|
+ tar_signal = (
|
|
|
+ tar_waves[:, :, trim:-trim]
|
|
|
+ .transpose(0, 1)
|
|
|
+ .reshape(2, -1)
|
|
|
+ .numpy()[:, :-pad]
|
|
|
+ )
|
|
|
+
|
|
|
+ start = 0 if mix == 0 else margin_size
|
|
|
+ end = None if mix == list(mixes.keys())[::-1][0] else -margin_size
|
|
|
+
|
|
|
+ if margin_size == 0:
|
|
|
+ end = None
|
|
|
+
|
|
|
+ sources.append(tar_signal[:, start:end])
|
|
|
+
|
|
|
+ progress_bar.update(1)
|
|
|
+
|
|
|
+ chunked_sources.append(sources)
|
|
|
+ _sources = np.concatenate(chunked_sources, axis=-1)
|
|
|
+
|
|
|
+ progress_bar.close()
|
|
|
+ return _sources
|
|
|
+
|
|
|
+ def predict(self, file_path):
|
|
|
+
|
|
|
+ mix, rate = librosa.load(file_path, mono=False, sr=44100)
|
|
|
+
|
|
|
+ if mix.ndim == 1:
|
|
|
+ mix = np.asfortranarray([mix, mix])
|
|
|
+
|
|
|
+ mix = mix.T
|
|
|
+ sources = self.demix(mix.T)
|
|
|
+ opt = sources[0].T
|
|
|
+
|
|
|
+ return (mix - opt, opt, rate)
|
|
|
+
|
|
|
+def main():
|
|
|
+ parser = ArgumentParser()
|
|
|
+
|
|
|
+ parser.add_argument("files", nargs="+", type=Path, default=[], help="Source audio path")
|
|
|
+ parser.add_argument("-o", "--output", type=Path, default=Path("separated"), help="Output folder")
|
|
|
+ parser.add_argument("-m", "--model_path", type=Path, help="MDX Net ONNX Model path")
|
|
|
+
|
|
|
+ parser.add_argument("-d", "--no-denoise", dest="denoise", action="store_false", default=True, help="Disable denoising")
|
|
|
+ parser.add_argument("-M", "--margin", type=int, default=44100, help="Margin")
|
|
|
+ parser.add_argument("-c", "--chunks", type=int, default=15, help="Chunk size")
|
|
|
+ parser.add_argument("-F", "--n_fft", type=int, default=6144)
|
|
|
+ parser.add_argument("-t", "--dim_t", type=int, default=8)
|
|
|
+ parser.add_argument("-f", "--dim_f", type=int, default=2048)
|
|
|
+
|
|
|
+ args = parser.parse_args()
|
|
|
+ dict_args = vars(args)
|
|
|
+
|
|
|
+ os.makedirs(args.output, exist_ok=True)
|
|
|
+
|
|
|
+ for file_path in args.files:
|
|
|
+ predictor = Predictor(args=dict_args)
|
|
|
+ vocals, no_vocals, sampling_rate = predictor.predict(file_path)
|
|
|
+ filename = os.path.splitext(os.path.split(file_path)[-1])[0]
|
|
|
+ sf.write(os.path.join(args.output, filename+"_no_vocals.wav"), no_vocals, sampling_rate)
|
|
|
+ sf.write(os.path.join(args.output, filename+"_vocals.wav"), vocals, sampling_rate)
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ main()
|
|
|
+
|
|
|
+
|